Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Physiol Rep ; 10(8): e15192, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35439354

RESUMO

Anthracyclines are standard-of-care chemotherapy for the treatment of triple-negative breast cancer (TNBC). However, high anthracyclines cumulative doses increase heart failure risk. Designing therapeutic strategies that ameliorate cardiac toxicities without compromising oncologic efficacy are important to improve TNBC outcomes and survivorship. The purpose of this study was to determine the impact of diet on TNBC chemotherapeutic responsiveness and development of chemotherapy-induced cardiac damage. Female BALB/c mice fed a control, Western, Mediterranean, or Western + fish oil diet were injected with 1 × 106 4T1-luciferase TNBC into the mammary fat pad. Tumors grew for 21 days before surgical tumor resection, then mice were treated with 3.3 mg/kg i.v. doxorubicin for 3 weeks. Vevo (R) cardiac ultrasound was performed. Female nu/nu mice were placed on diets before 1 × 105  MDA-MB-231-luciferase TNBC were injected via the tail vein to induce the development of lung metastases. Mice were treated with saline or 3.3 mg/kg i.v. doxorubicin for 3 weeks, and the development of metastases visualized by IVIS (R). Consumption of a high-fat diet increased TNBC growth regardless of dietary pattern. Western diet-fed mice developed lung metastases sooner and displayed increased lung metastatic lesion formation, which was not observed in Mediterranean diet-fed mice. Western diet-fed animals displayed worse cardiac function when compared with Mediterranean diet-fed animals. Hearts from Western diet-fed animals displayed increased fibrosis. Diet represents a modifiable component directly impacting tumor growth, antitumor chemotherapy efficacy, and cardiac toxicities. Our data suggest that the Mediterranean diet may reduce lung metastatic lesions formation and prevent the development of cardiac toxicities.


Assuntos
Neoplasias Pulmonares , Neoplasias de Mama Triplo Negativas , Animais , Antraciclinas/uso terapêutico , Antibióticos Antineoplásicos/uso terapêutico , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/etiologia , Linhagem Celular Tumoral , Dieta , Doxorrubicina/efeitos adversos , Feminino , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Camundongos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico
2.
Cancer Res ; 81(14): 3890-3904, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34083249

RESUMO

Obesity and poor diet often go hand-in-hand, altering metabolic signaling and thereby impacting breast cancer risk and outcomes. We have recently demonstrated that dietary patterns modulate mammary microbiota populations. An important and largely open question is whether the microbiome of the gut and mammary gland mediates the dietary effects on breast cancer. To address this, we performed fecal transplants between mice on control or high-fat diets (HFD) and recorded mammary tumor outcomes in a chemical carcinogenesis model. HFD induced protumorigenic effects, which could be mimicked in animals fed a control diet by transplanting HFD-derived microbiota. Fecal transplants altered both the gut and mammary tumor microbiota populations, suggesting a link between the gut and breast microbiomes. HFD increased serum levels of bacterial lipopolysaccharide (LPS), and control diet-derived fecal transplant reduced LPS bioavailability in HFD-fed animals. In vitro models of the normal breast epithelium showed that LPS disrupts tight junctions (TJ) and compromises epithelial permeability. In mice, HFD or fecal transplant from animals on HFD reduced expression of TJ-associated genes in the gut and mammary gland. Furthermore, infecting breast cancer cells with an HFD-derived microbiome increased proliferation, implicating tumor-associated bacteria in cancer signaling. In a double-blind placebo-controlled clinical trial of patients with breast cancer administered fish oil supplements before primary tumor resection, dietary intervention modulated the microbiota in tumors and normal breast tissue. This study demonstrates a link between the gut and breast that mediates the effect of diet on cancer. SIGNIFICANCE: This study demonstrates that diet shifts the microbiome in the gut and the breast tumor microenvironment to affect tumorigenesis, and oral dietary interventions can modulate the tumor microbiota in patients with breast cancer. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/14/3890/F1.large.jpg.


Assuntos
Mama/fisiopatologia , Dieta Hiperlipídica/efeitos adversos , Animais , Carcinogênese , Feminino , Humanos , Camundongos , Microbiota , Transdução de Sinais
3.
Int J Mol Sci ; 21(1)2019 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-31881743

RESUMO

Despite advances in cancer therapy, several persistent issues remain. These include cancer recurrence, effective targeting of aggressive or therapy-resistant cancers, and selective treatments for transformed cells. This review evaluates the current findings and highlights the potential of targeting the unfolded protein response to treat cancer. The unfolded protein response, an evolutionarily conserved pathway in all eukaryotes, is initiated in response to misfolded proteins accumulating within the lumen of the endoplasmic reticulum. This pathway is initially cytoprotective, allowing cells to survive stressful events; however, prolonged activation of the unfolded protein response also activates apoptotic responses. This balance is key in successful mammalian immune response and inducing cell death in malignant cells. We discuss how the unfolded protein response affects cancer progression, survival, and immune response to cancer cells. The literature shows that targeting the unfolded protein response as a monotherapy or in combination with chemotherapy or immunotherapies increases the efficacy of these drugs; however, systemic unfolded protein response targeting may yield deleterious effects on immune cell function and should be taken into consideration. The material in this review shows the promise of both approaches, each of which merits further research.


Assuntos
Estresse do Retículo Endoplasmático , Neoplasias/patologia , Microambiente Tumoral , Resposta a Proteínas não Dobradas , Chaperona BiP do Retículo Endoplasmático , Endorribonucleases/metabolismo , Proteínas de Choque Térmico/metabolismo , Humanos , Neoplasias/imunologia , Neoplasias/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Linfócitos T/citologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , eIF-2 Quinase/metabolismo
4.
J Cell Sci ; 131(12)2018 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-29848659

RESUMO

Endogenous sphingolipids (ceramide) and related synthetic molecules (FTY720, SH-BC-893) reduce nutrient access by decreasing cell surface expression of a subset of nutrient transporter proteins. Here, we report that these sphingolipids disrupt endocytic recycling by inactivating the small GTPase ARF6. Consistent with reported roles for ARF6 in maintaining the tubular recycling endosome, MICAL-L1-positive tubules were lost from sphingolipid-treated cells. We propose that ARF6 inactivation may occur downstream of PP2A activation since: (1) sphingolipids that fail to activate PP2A did not reduce ARF6-GTP levels; (2) a structurally unrelated PP2A activator disrupted tubular recycling endosome morphology and transporter localization; and (3) overexpression of a phosphomimetic mutant of the ARF6 GEF GRP1 prevented nutrient transporter loss. ARF6 inhibition alone was not toxic; however, the ARF6 inhibitors SecinH3 and NAV2729 dramatically enhanced the killing of cancer cells by SH-BC-893 without increasing toxicity to peripheral blood mononuclear cells, suggesting that ARF6 inactivation contributes to the anti-neoplastic actions of sphingolipids. Taken together, these studies provide mechanistic insight into how ceramide and sphingolipid-like molecules limit nutrient access and suppress tumor cell growth and survival.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Nutrientes/metabolismo , Esfingolipídeos/metabolismo , Fator 6 de Ribosilação do ADP , Fatores de Ribosilação do ADP/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sistema y+ de Transporte de Aminoácidos/metabolismo , Linhagem Celular Tumoral , Proteínas do Citoesqueleto/metabolismo , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Cloridrato de Fingolimode/farmacologia , Cadeia Pesada da Proteína-1 Reguladora de Fusão/metabolismo , Células HeLa , Humanos , Proteínas com Domínio LIM/metabolismo , Células MCF-7 , Proteínas dos Microfilamentos , Oxigenases de Função Mista , Esfingolipídeos/farmacologia
5.
Cancer Metastasis Rev ; 37(2-3): 469-476, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29909440

RESUMO

The metabolism of arachidonic acid and other polyunsaturated fatty acids produces eicosanoids, a family of biologically active lipids that are implicated in homeostasis and in several pathologies that involve inflammation. Inflammatory processes mediated by eicosanoids promote carcinogenesis by exerting direct effects on cancer cells and by affecting the tumor microenvironment. Therefore, understanding how eicosanoids mediate cancer progression may lead to better approaches and chemopreventive strategies for the treatment of cancer. The matricellular protein thrombospondin-1 is involved in processes that profoundly regulate inflammatory pathways that contribute to carcinogenesis and metastatic spread. This review focuses on interactions of thrombospondin-1 and eicosanoids in the microenvironment that promote carcinogenesis and how the microenvironment can be targeted for cancer prevention to increase curative responses of cancer patients.


Assuntos
Eicosanoides/metabolismo , Inflamação/metabolismo , Neoplasias/metabolismo , Trombospondina 1/metabolismo , Animais , Humanos , Inflamação/patologia , Neoplasias/patologia , Transdução de Sinais
6.
J Clin Invest ; 126(11): 4088-4102, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27669461

RESUMO

Oncogenic mutations drive anabolic metabolism, creating a dependency on nutrient influx through transporters, receptors, and macropinocytosis. While sphingolipids suppress tumor growth by downregulating nutrient transporters, macropinocytosis and autophagy still provide cancer cells with fuel. Therapeutics that simultaneously disrupt these parallel nutrient access pathways have potential as powerful starvation agents. Here, we describe a water-soluble, orally bioavailable synthetic sphingolipid, SH-BC-893, that triggers nutrient transporter internalization and also blocks lysosome-dependent nutrient generation pathways. SH-BC-893 activated protein phosphatase 2A (PP2A), leading to mislocalization of the lipid kinase PIKfyve. The concomitant mislocalization of the PIKfyve product PI(3,5)P2 triggered cytosolic vacuolation and blocked lysosomal fusion reactions essential for LDL, autophagosome, and macropinosome degradation. By simultaneously limiting access to both extracellular and intracellular nutrients, SH-BC-893 selectively killed cells expressing an activated form of the anabolic oncogene Ras in vitro and in vivo. However, slower-growing, autochthonous PTEN-deficient prostate tumors that did not exhibit a classic Warburg phenotype were equally sensitive. Remarkably, normal proliferative tissues were unaffected by doses of SH-BC-893 that profoundly inhibited tumor growth. These studies demonstrate that simultaneously blocking parallel nutrient access pathways with sphingolipid-based drugs is broadly effective and cancer selective, suggesting a potential strategy for overcoming the resistance conferred by tumor heterogeneity.


Assuntos
Ativadores de Enzimas/farmacologia , Proteínas de Neoplasias/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Proteína Fosfatase 2/antagonistas & inibidores , Esfingolipídeos/farmacologia , Animais , Transporte Biológico Ativo/efeitos dos fármacos , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Camundongos , Camundongos Knockout , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Proteína Fosfatase 2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...